Our papers are the official record of our discoveries. They allow others to build on and apply our work. Each one is the result of many months of research, so we make a special effort to make our papers clear, inspiring and beautiful, and publish them in leading journals.
- Date
- Subject
- Theme
- Journal
- Citations
- Altmetric
- SNIP
- Author
- T. Fink
- O. Gamayun
- A. Esterov
- Y. He
- F. Sheldon
- A. V. Kosyak
- A. Ochirov
- E. Sobko
- M. Burtsev
- M. Reeves
- I. Shkredov
- G. Caldarelli
- R. Hannam
- F. Caravelli
- A. Coolen
- O. Dahlsten
- A. Mozeika
- M. Bardoscia
- P. Barucca
- M. Rowley
- I. Teimouri
- F. Antenucci
- A. Scala
- R. Farr
- A. Zegarac
- S. Sebastio
- B. Bollobás
- F. Lafond
- D. Farmer
- C. Pickard
- T. Reeves
- J. Blundell
- A. Gallagher
- M. Przykucki
- P. Smith
- L. Pietronero
Mathematical medicine
Tumour infiltration
A delicate balance between white blood cell protein expression and the molecules on the surface of tumour cells determines cancer prognoses.
Inference
Exact linear regression
Exact methods supersede approximations used in high-dimensional linear regression to find correlations in statistical physics problems.
Neural networks
Deep layered machines
The ability of deep neural networks to generalize can be unraveled using path integral methods to compute their typical Boolean functions.
Statistical physics
Replica analysis of overfitting
Statistical methods that normally fail for very high-dimensional data can be rescued via mathematical tools from statistical physics.
Inference, Statistical physics
Replica clustering
We optimize Bayesian data clustering by mapping the problem to the statistical physics of a gas and calculating the lowest entropy state.
Statistical physics
Spin systems on Bethe lattices
Exact equations for the thermodynamic quantities of lattices made of d-dimensional hypercubes are obtainable with the Bethe-Peierls approach.