• Date
  • Subject
  • Theme
  • Journal
  • Citations
  • Altmetric
  • SNIP
  • Author
x1
  • J. WangJ. Wang
  • M. BurtsevM. Burtsev
  • F. SheldonF. Sheldon
  • F. CaravelliF. Caravelli
  • I. ShkredovI. Shkredov
  • A. StepanenkoA. Stepanenko
  • O. GamayunO. Gamayun
  • Y. HeY. He
  • A. SarikyanA. Sarikyan
  • A. V. KosyakA. V. Kosyak
  • E. SobkoE. Sobko
  • A. EsterovA. Esterov
  • A. OchirovA. Ochirov
  • M. ReevesM. Reeves
  • T. FinkT. Fink
  • G. CaldarelliG. Caldarelli
  • R. HannamR. Hannam
  • A. CoolenA. Coolen
  • O. DahlstenO. Dahlsten
  • A. MozeikaA. Mozeika
  • M. BardosciaM. Bardoscia
  • P. BaruccaP. Barucca
  • M. RowleyM. Rowley
  • I. TeimouriI. Teimouri
  • F. AntenucciF. Antenucci
  • A. ScalaA. Scala
  • R. FarrR. Farr
  • A. ZegaracA. Zegarac
  • S. SebastioS. Sebastio
  • B. BollobásB. Bollobás
  • F. LafondF. Lafond
  • D. FarmerD. Farmer
  • C. PickardC. Pickard
  • T. ReevesT. Reeves
  • J. BlundellJ. Blundell
  • A. GallagherA. Gallagher
  • M. PrzykuckiM. Przykucki
  • P. SmithP. Smith
  • L. PietroneroL. Pietronero
  • Linearization problem for finite subgroups of the plane Cremona group

    Algebraic geometry

    APASA. SarikyanEY Arxiv

    Linearising actions

    We give a solution of the linearisation problem in the Cremona group of rank two over an algebraically closed field of characteristic zero.

aeds
aeds
aeds
aeds
LCP
aeds
aeds
aeds
aeds
aeds
aeds
aeds
aeds
aeds
aeds
aeds
aeds

Linearising actions

Algebraic geometry

We give a solution of the linearisation problem in the Cremona group of rank two over an algebraically closed field of characteristic zero.

Linearization problem for finite subgroups of the plane Cremona group

Arxiv (2025)

A. Pinardin, A. Sarikyan, E. Yasinsky

Some data hasn't been fetched...

Arxiv (2025)

A. Pinardin, A. Sarikyan, E. Yasinsky