Our papers are the official record of our discoveries. They allow others to build on and apply our work. Each one is the result of many months of research, so we make a special effort to make our papers clear, inspiring and beautiful, and publish them in leading journals.
- Date
- Subject
- Theme
- Journal
- Citations
- Altmetric
- SNIP
- Author
 M. Burtsev M. Burtsev
 A. V. Kosyak A. V. Kosyak
 J. Wang J. Wang
 Y. He Y. He
 O. Gamayun O. Gamayun
 E. Sobko E. Sobko
 F. Sheldon F. Sheldon
 F. Caravelli F. Caravelli
 I. Shkredov I. Shkredov
 A. Stepanenko A. Stepanenko
 A. Sarikyan A. Sarikyan
 A. Esterov A. Esterov
 A. Ochirov A. Ochirov
 M. Reeves M. Reeves
 T. Fink T. Fink
 G. Caldarelli G. Caldarelli
 R. Hannam R. Hannam
 A. Coolen A. Coolen
 O. Dahlsten O. Dahlsten
 A. Mozeika A. Mozeika
 M. Bardoscia M. Bardoscia
 P. Barucca P. Barucca
 M. Rowley M. Rowley
 I. Teimouri I. Teimouri
 F. Antenucci F. Antenucci
 A. Scala A. Scala
 R. Farr R. Farr
 A. Zegarac A. Zegarac
 S. Sebastio S. Sebastio
 B. Bollobás B. Bollobás
 F. Lafond F. Lafond
 D. Farmer D. Farmer
 C. Pickard C. Pickard
 T. Reeves T. Reeves
 J. Blundell J. Blundell
 A. Gallagher A. Gallagher
 M. Przykucki M. Przykucki
 P. Smith P. Smith
 L. Pietronero L. Pietronero
 - Representation theory - Braid representations- We demonstrate that the Lawrence–Krammer representation arises as a q-deformation of the symmetric square of the Burau representation. 
 - Representation theory - Group representations- A general approach to proving the irreducibility of representations of infinite-dimensional groups within the frame of Ismagilov's conjecture. 
 - Representation theory - Irreducible group action- We construct the unitary representation of an infinite-dimensional general linear group acting on a space and establish its irreducibility. 
 - Linear algebra - Infinite parallelotope- We study the geometry of finite dimensional space as the dimension grows to infinity with an accent on the height of the parallelotope.